0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides Using RANS and SPH Models

[+] Author Affiliations
Kaushik Das, Ron Janetzke, Debashis Basu, Steve Green, John Stamatakos

Southwest Research Institute, San Antonio, TX

Paper No. OMAE2009-79596, pp. 581-594; 14 pages
doi:10.1115/OMAE2009-79596
From:
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Polar and Arctic Sciences and Technology; CFD and VIV
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4345-1 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME

abstract

Tsunami wave generation by submarine and aerial landslides is examined in this paper. Two different two-dimensional numerical methods have been used to simulate the time histories of fluid motion, free surface deformation, shoreline movement, and wave runup from tsunami waves generated by aerial and submarine landslides. The first approach is based on the Navier-Stokes equation and the volume of fluid (VOF) method: the Reynolds Averaged Navier-Stokes (RANS)-based turbulence model simulates turbulence, and the VOF method tracks the free surface locations. The second method uses Smoothed Particle Hydrodynamics (SPH)—a numerical model based on a fully Lagrangian approach. In the current work, two-dimensional numerical simulations are carried out for a freely falling wedge representing the landslide and subsequent wave generations. Numerical simulations for the landslide-driven tsunami waves have been performed with different values of landslide material densities. Numerical results obtained from both approaches are compared with experimental data. Simulated results for both aerial and submerged landslides show the complex flow patterns in terms of the velocity field, shoreline evolution, and free-surface profiles. Flows are found to be strongly transient, rotational, and turbulent. Predicted numerical results for time histories of free-surface fluctuations and the runup/rundown at various locations are in good agreement with the available experimental data. The similarity and discrepancy between the solutions obtained by the two approaches are explored and discussed.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In