Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Measured VIV for Free Spanning Pipelines

[+] Author Affiliations
Ida M. Aglen, Carl M. Larsen

Norwegian University of Science and Technology, Trondheim, Norway

Finn Gunnar Nielsen

StatoilHydro Research Centre, Bergen, Norway

Paper No. OMAE2009-79561, pp. 543-552; 10 pages
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Polar and Arctic Sciences and Technology; CFD and VIV
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4345-1 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME


As the search for oil and gas takes place on increasing water depths, the traditional production systems based on fixed or floating platforms becomes increasingly costly. A good alternative to the traditional production systems are subsea to shore solutions, where pipelines transport the product to a land terminal for processing. One of the main challenges of documenting pipeline integrity in subsea to shore solutions is related to fatigue induced by vortex induced vibrations (VIV). Rough and uneven seabed introduce free spans that can be short or long, have small or large clearance and can have a large variety of boundary conditions at the shoulders. Hence, there is a need for methods that can give reliable estimate for fatigue damage under all realistic conditions. This paper investigates the measured VIV for a free spanning pipeline model. The model has L/D ratios from 72 to 350 and includes both single and multi-spans. It is exposed to uniform current and is free to vibrate in both cross-flow (CF) and in-line (IL) direction. Bending strains are measured in CF and IL direction at ten locations along the pipe. The observed cross-sectional trajectories are analyzed, with particular focus on the complex interaction between CF and IL VIV, and the significance of higher order response components. The purpose of this investigation is to understand the behaviour of the free spanning pipelines with respect to response amplitudes, frequency and modal composition, and also to identify characteristic cross section trajectories for further investigation. This work is a continuation of the earlier published results by Nielsen et al. [1] and Soreide et al. [2].

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In