Full Content is available to subscribers

Subscribe/Learn More  >

A Mechanistic Model for Predicting Heat and Mass Transfer in Vertical Two-Phase Flow

[+] Author Affiliations
Siamack A. Shirazi, Ebrahin Al-Adsani, John R. Shadley, Edmund F. Rybicki

University of Tulsa, Tulsa, OK

Paper No. HT-FED2004-56465, pp. 685-693; 9 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 3
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4692-X | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


The mass transfer coefficient plays an important role in predicting corrosion rates. Using similarities between heat and mass transfer mechanisms, a mechanistic model is proposed to predict heat and mass transfer coefficients for two-phase flow in vertical pipes. The mechanistic model is evaluated by using water-air heat transfer experimental data obtained from the literature. The mechanistic model is also compared with commonly used empirical correlations. In comparison with available heat transfer correlations, the mechanistic model performs very well for vertical annular flow, bubbly flow and slug or intermittent flow that were considered. The mechanistic model is based on physics of two-phase flow and thus is expected to be more general than empirical correlations.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In