0

Full Content is available to subscribers

Subscribe/Learn More  >

Vertical Riser VIV Simulation in Uniform Current

[+] Author Affiliations
Kevin Huang, Hamn-Ching Chen, Chia-Rong Chen

Texas A&M University, College Station, TX

Paper No. OMAE2009-79349, pp. 395-405; 11 pages
doi:10.1115/OMAE2009-79349
From:
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Polar and Arctic Sciences and Technology; CFD and VIV
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4345-1 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME

abstract

Recently some riser vortex-induced vibrations (VIV) experimental data have been made publicly available (oe.mit.edu/VIV/), including a 10m riser VIV experiment performed by MARINTEK and donated by ExxonMobil URC. This paper presents our numerical simulation results for this 10m riser and the comparisons with the experimental results in uniform current. The riser was made of a 10m brass pipe with an OD of 0.02m (L/D = 482), and mass ratio of 1.75. The riser was positioned vertically with top tension of 817N, and pinned at its two ends to the test rig. Rotating the rig in the wave tank would simulate the uniform current. In the present numerical simulation the riser’s ends were pinned to the ground, and a uniform far field incoming current was imposed. The riser and its surrounding fluid were discretized using 1.5 million elements. The flow field is solved using an unsteady Reynolds-Averaged Navier-Stokes (RANS) numerical method in conjunction with a chimera domain decomposition approach with overset grids. The riser is also discretized into 250 segments. Its motion is predicted through a tensioned beam motion equation with external force obtained by integrating viscous and pressure loads on the riser surface. Then the critical parameters including riser VIV a/D, vorticity contours, and motion trajectories were processed. The same parameters for the experimental data were also processed since these data sets are in “raw time-histories” format. Finally, comparisons are made and conclusions are drawn. The present numerical method predicts similar dominant modes and amplitudes as the experiment. It is also shown that the cross flow VIV in the riser top section is not symmetric to that of the bottom section. One end has considerably higher cross flow vibrations than the other end, which is due to the non-dominant modal vibrations in both in-line and cross flow directions. The computational fluid dynamics (CFD) simulation results also agree with the experimental results very well on the riser vibrating pattern and higher harmonics response. The higher harmonics were studied and it is found they are related to the lift coefficients, hence the vortex shedding patterns. It is concluded that the present CFD approach is able to provide reasonable results and is suitable for 3D riser VIV analysis in deepwater and complex current conditions.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In