0

Full Content is available to subscribers

Subscribe/Learn More  >

Long-Term Reliability Analysis of a Spar Buoy-Supported Floating Offshore Wind Turbine

[+] Author Affiliations
A. Sultania, L. Manuel

The University of Texas at Austin, Austin, TX

Paper No. OMAE2011-50072, pp. 809-818; 10 pages
doi:10.1115/OMAE2011-50072
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Ocean Space Utilization; Ocean Renewable Energy
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4437-3
  • Copyright © 2011 by ASME

abstract

Most offshore wind turbines constructed to date have support structures for the turbine towers that extend to the seabed. Such bottom-supported turbines are confined to shallow waters closer to the shore. Sites farther offshore provide a better wind resource (i.e., stronger wind and less turbulence) while also reducing concerns related to visual impact and noise. However, in deeper waters, bottom-supported turbines are less economical. Wind turbines mounted atop floating platforms are, thus, being considered for deepwater sites. Several floating platform concepts are being considered; they differ mainly in how they provide stability to counter the large mass of the rotor-nacelle assembly located high above the water. One of these alternative concepts is a spar buoy floating platform with a deep draft structure and a low center of gravity, below the center of buoyancy. The reliability analysis of a spar-supported 5MW wind turbine based on stochastic simulation is the subject of this study. Environmental data from a selected deepwater reference site are employed in the numerical studies. Using time-domain simulations, the dynamic behavior of the coupled platform-turbine system is studied; statistics of tower and rotor loads as well as platform motions are estimated and critical combinations of wind speed and wave height identified. Long-term loads associated with a 50-year return period are estimated using statistical extrapolation based on loads derived from the simulations. Inverse reliability procedures that seek appropriate load fractiles for the underlying random variables consistent with the target return period are employed; these include use of: (i) the 2D Inverse First-Order Reliability Method (FORM) where an extreme load is selected at its median level (conditional on a derived critical wind speed and wave height combination); and (ii) the 3D Inverse FORM where variability in the environmental and load random variables is fully represented to derive the 50-year load.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In