0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Foundation Modelling Methodology on the Dynamic Response of Offshore Wind Turbine Support Structures

[+] Author Affiliations
Eric Van Buren

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. OMAE2011-49492, pp. 501-510; 10 pages
doi:10.1115/OMAE2011-49492
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Ocean Space Utilization; Ocean Renewable Energy
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4437-3
  • Copyright © 2011 by ASME

abstract

When preliminarily investigating offshore wind turbine tower concepts it is common to develop optimization software for determining the best possible structural layout. This type of optimization procedure requires a large number of iterations to determine the best possible design and can be quite time consuming, particularly if the dynamic performance of each structure is to be investigated using an aero-hydro-servo-elastic type solver. When performing this type of “dynamic optimization” it is convenient to simply assume fixed boundary conditions at the soil-structure interface and ignore the dynamic properties of the foundation. Using fixed conditions allows for each of the layouts to be compared quickly and makes the computer models simple to create and more efficient in computation than if the foundation is included. Alternatively, the foundations of offshore wind turbine support structures can be represented with several different methods of varying complexity and detail. The most widely used method is the use of a distributed spring model commonly known as the p-y method. This approach is the primary method in most offshore wind turbine design standards for determining the static and cyclic reaction of offshore piles. In this work, two offshore wind support structure layouts are modeled and analyzed in the wind turbine analysis program HAWC2. Dynamic time series analyses under operating conditions are carried out for each tower with fixed conditions and with foundation models based on the p-y method in order to determine the appropriateness of utilizing fixed foundation conditions for optimization procedures.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In