0

Full Content is available to subscribers

Subscribe/Learn More  >

An Assessment of the Potential of Tidal Power From Minas Passage, Bay of Fundy, Using Three-Dimensional Models

[+] Author Affiliations
Richard Karsten

Acadia University, Wolfville, NS, Canada

Paper No. OMAE2011-49249, pp. 377-384; 8 pages
doi:10.1115/OMAE2011-49249
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Ocean Space Utilization; Ocean Renewable Energy
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4437-3
  • Copyright © 2011 by ASME

abstract

Large tidal currents exist in Minas Passage, which connects Minas Basin to the Bay of Fundy off the northwestern coast of Nova Scotia. The strong currents through this deep, narrow channel make it a promising location for the generation of electrical power using instream turbines. These strong currents are clearly illustrated in the results of a high-resolution, three-dimensional model of the flow through Minas Passage presented here. The simulations also clearly indicate the asymmetry of the flood and ebb tides and the 3D structure of the flow. A previous study has indicated that as much as 7000 MW could be extracted from the tidal currents through Minas Passage. However, this estimate was based on a complete fence of turbines across the passage, in essence a tidal barrage. In this paper, the power potential of partial turbine fences is examined. In order to estimate the power potential of turbine arrays, the theory of partial turbine fences is adapted to the particular dynamics of Minas Passage. The theory estimates the potential power of the fence and the change in flow that would result. The results are presented in terms of the portion of the cross-sectional area that the turbines occupy and the drag coefficient of the turbines. When the turbine fence occupies a large portion of the passage, the potential power of the fence rises significantly, to a value much larger than estimates based on the kinetic energy flux. The increase in power comes from the increased tidal head that a large turbine fence creates and the resulting increase in the turbine drag. We also present the efficiency of the turbine fence — given as the ratio of the power associated with the turbine drag over the total power extracted from the flow — and the impact of the turbines on the tidal flow. The results of the theory are compared to numerical simulations of the flow through the passage with turbines represented as regions of increased drag. The numerical simulations give power values that are three to six time as high as the theory suggests is possible. This discrepancy is examined by plotting the changes in tidal currents caused by the turbine fence.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In