Full Content is available to subscribers

Subscribe/Learn More  >

Efficient Design Method for Non-Synchronous Vibrations Using Enforced Motion

[+] Author Affiliations
Meredith A. Spiker, Robert E. Kielb, Kenneth C. Hall, Jeffrey P. Thomas

Duke University, Durham, NC

Paper No. GT2008-50599, pp. 735-747; 13 pages
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 5: Structures and Dynamics, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4315-4 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME


This paper presents the results of a new enforced motion method using harmonic balance computational fluid dynamics (CFD) analysis to design for NSV. Currently, most researchers employ a time domain CFD technique to directly find the frequency of the underlying flow instability which can take significant computational time. NSV is said to occur when the frequency of the instability coincides with a blade mode frequency. The enforced motion design method uses blade motion to attempt to force the fluid frequency to lock-on to the blade vibration frequency at a specified amplitude. For a fixed critical amplitude and blade mode frequency, a range of interblade phase angles (IBPAs) is investigated to determine the aerodynamic damping. A negative value of damping at any IBPA deems the design unacceptable. Furthermore, a procedure for blade re-design (frequency changing) is presented. At the least stable IBPA, the damping is determined for a range of blade frequencies and amplitudes to determine the Limit Cycle Oscillation (LCO) amplitude. A better design is then at the blade frequency that minimizes the blade vibration amplitude. Therefore, these preliminary results indicate that it is advantageous to include blade motion in NSV design approaches. Most significantly, it gives designers a quick and efficient method to assess a design for NSV.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In