Full Content is available to subscribers

Subscribe/Learn More  >

Concept of Seafloor Mineral Processing for Development of Seafloor Massive Sulfides

[+] Author Affiliations
Yasuharu Nakajima, Shotaro Uto, Shigeo Kanada, Joji Yamamoto, Ichihiko Takahashi

National Maritime Research Institute, Mitaka, Tokyo, Japan

Sho Otabe, Jun Sadaki, Katsunori Okaya, Seiji Matsuo, Toyohisa Fujita

The University of Tokyo, Tokyo, Japan

Paper No. OMAE2011-49981, pp. 157-162; 6 pages
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Ocean Space Utilization; Ocean Renewable Energy
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4437-3
  • Copyright © 2011 by ASME


Seafloor Massive Sulfides (SMS), which were formed by deposition of precipitates from hydrothermal fluids vented from seafloor, is one of unconventional mineral resources beneath deep seafloors in the world. The authors have proposed the concept of seafloor mineral processing for development of SMS, where useful minerals included in SMS ores are separated on seafloor to be lifted while the remaining gangue is disposed on seafloor in appropriate ways. To apply column flotation, one of conventional methods in mineral processing, to seafloor mineral processing, the authors carried out simulating experiments of column flotation on deep seafloor using ores including copper, iron, lead and zinc as metallic elements. Prior to the experiments at high pressures, preparatory experiments at the atmospheric pressure were carried out to find out the optimum condition of the properties of pulp, a mixture of feed ore, water and chemical reagents. In flotation experiments at high pressures, formation and overflow of froth layer by bubbling were observed at 1MPa in both of pulps with pure water and artificial seawater. The analytical data showed that the concentration of metallic elements such as copper and zinc in the concentrates recovered from the experiments was higher than that in the feed ores while the concentration of silicon and calcium, which are assigned to gangue, in the concentrates was lower than that in the feed ores. These results suggest that column flotation can be applied to operation on seafloor.

Copyright © 2011 by ASME
Topics: Seabed



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In