0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of the Validity of Linear Theory to Assess the Behaviour of a Heaving Point Absorber at the Belgian Continental Shelf

[+] Author Affiliations
Griet De Backer, Marc Vantorre, Kim De Beule, Charlotte Beels, Julien De Rouck

Ghent University, Zwijnaarde, Belgium

Paper No. OMAE2009-79781, pp. 1013-1020; 8 pages
doi:10.1115/OMAE2009-79781
From:
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4: Ocean Engineering; Ocean Renewable Energy; Ocean Space Utilization, Parts A and B
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4344-4 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME

abstract

The results of an experimental investigation on a heaving point absorber are presented. The physical tests are used to validate numerical simulations of the behaviour of the point absorber based on linear theory in the frequency and time domain. Floater response and power absorption are evaluated in regular and irregular waves representing a mild wave climate. A good correspondence is found between the physical and numerical test results. In irregular waves the difference between numerical and experimental power absorption is generally smaller than 20%. In regular waves the correspondence is good as well, except in the resonance zone; i.e. when the natural frequency of the buoy is tuned towards the resonance frequency of the incident wave. In this case, non-linear effects such as viscosity and a non-linear hydrostatic restoring force become important due to the high velocities and motion amplitudes of the point absorber. However, because of these large amplitudes, pure resonant cases are often not preferred in practical applications. In general it is concluded that the numerical results are in good accordance with the experimental results and can be used to predict the point absorber behaviour in mild energetic waves in non-resonance conditions.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In