0

Full Content is available to subscribers

Subscribe/Learn More  >

Windage Power Losses From Spiral Bevel Gears With Varying Oil Flows and Shroud Configurations

[+] Author Affiliations
Graham Johnson, Budi Chandra, Colin Foord, Kathy Simmons

University of Nottingham, Nottingham, UK

Paper No. GT2008-50424, pp. 1415-1421; 7 pages
doi:10.1115/GT2008-50424
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

In many aero-engines the power to drive accessories is transmitted through high speed bevel gears in a chamber in the center of the engine. The windage power loss (WPL) associated with these gears makes a significant contribution to the overall heat generation within the chamber. Shrouding the gears provides an effective method of reducing this WPL and managing the flow of lubricating oil. Experimental and computational programs at the University of Nottingham Technology Centre in Gas Turbine Transmission Systems are providing an improved understanding of shroud performance and design. This paper presents results from a pair of shrouded meshing gears run at representative speeds and oil flow in a rig with speed and torque measurement. A previously published study of a single bevel gear operating in air [1] found a reduction in torque of up to 70% from shrouding. In this work the addition of oil and the pinion gear did not lead to high torque due to the build up of oil under the shrouds, but the reduction in torque due to fitting the shrouds is significantly less than was found for the same gear in air alone. In order to isolate the various parameters, further testing with a single gear was carried out. A fully (360 degree) shrouded gear shows a big improvement over an unshrouded gear when running in air alone, but much of this benefit disappears as soon as a very small amount of oil is introduced under the shroud. This implies that the oil is recirculating under the shroud. Increasing the oil flow beyond this initial level increases the torque by the amount required to accelerate the oil mass flow up to the peripheral speed of the gear. Providing a full width slot in the shroud downstream of the oil jet allows the oil to escape without any recirculation and restores much of the benefit of the shroud. Further insight into the oil behavior is obtained from torque measurements and observations through a transparent shroud and with various slot configurations. Video observation shows evidence of a vortex flow under the shroud that carries some of the oil towards the inner diameter of the gear. The three main windage contributors, air alone, recirculation of oil under the shroud and acceleration of the feed oil are quantified and methods for achieving the optimum design are discussed.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In