Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Radial Location of Nozzles on Performance of Pre-Swirl Systems

[+] Author Affiliations
Paul Lewis, Mike Wilson, Gary Lock, J. Michael Owen

University of Bath, Bath, UK

Paper No. GT2008-50295, pp. 1397-1406; 10 pages
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME


This paper investigates the effect of the radial location of the inlet nozzles on the performance of a direct-transfer pre-swirl system in a rotor-stator wheel-space. A commercial code is used to solve the Reynolds Averaged Navier Stokes (RANS) equations using a high-Reynolds-number k-ε / k-ω turbulence model with wall functions near the boundary. The 3D steady state model has previously been validated against experimental results from a scale model of a gas turbine rotor-stator system. Computations are performed for three inlet-to-outlet radius ratios, rp /rb = 0.8, 0.9 and 1.0, a range of pre-swirl ratios, 0.5 < βb < 2.0, and varying flow parameter, 0.12 < λT < 0.36. The rotational Reynolds number for each case is 106 . The flow structure in the wheel-space and in the region around the receiver holes for each inlet radius is related to the swirl ratio. The performance of the system is quantified by two parameters: the discharge coefficient for the receiver holes (Cd,b ) and the adiabatic effectiveness for the system (Θb,ad ). As in previous work, the discharge coefficient is found to reach a maximum when the rotating core of fluid is in synchronous rotation with the receiver holes. As the radius ratio is increased this condition can be achieved with a smaller value for pre-swirl ratio βb . A simple model is presented to estimate the discharge coefficient based on the flow rate and swirl ratio in the system. The adiabatic effectiveness of the system increases linearly with pre-swirl ratio but is independent of flow rate. For a given pre-swirl ratio, the effectiveness increases as the radius ratio increases. Computed values show good agreement with analytical results. Both performance parameters show improvement with increasing inlet radius ratio, suggesting that for an optimum pre-swirl configuration an engine designer would place the pre-swirl nozzles at a high radius.

Copyright © 2008 by ASME
Topics: Nozzles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In