0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Augmentation Downstream of Rows of Various Dimple Geometries on the Suction Side of a Gas Turbine Airfoil

[+] Author Affiliations
Jason E. Dees, David G. Bogard

University of Texas - Austin, Austin, TX

Ronald S. Bunker

GE Global Research Center, Niskayuna, NY

Paper No. GT2008-51269, pp. 1335-1343; 9 pages
doi:10.1115/GT2008-51269
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

Heat transfer coefficients were measured downstream of a row of shaped film cooling holes as well as elliptical, diffuser, and teardrop shaped dimples simulating depressions due to film coolant holes of different shapes. These features were placed on the suction side of a simulated gas turbine vane. The dimples were used as approximations to film cooling holes after the heat transfer levels downstream of active fan shaped film cooling holes was found to be independent of film cooling. The effects of the dimples were tested with varying approach boundary layers, freestream turbulence intensity, and Reynolds numbers. For the case of an untripped (transitional) approach boundary layer, all dimple shapes caused approximately a factor of two increase in heat transfer coefficient relative to the smooth baseline condition due to the dimples effectively causing boundary layer transition downstream. The exact augmentation varied depending on the dimple geometry: diffuser shapes causing the largest augmentation and teardrop shapes causing the lowest augmentation. For tripped (turbulent boundary layer) approach conditions, the dimple shapes all caused the same 20% augmentation relative to the smooth tripped baseline. The already turbulent nature of the tripped approach flow reduces the effect that the dimples have on the downstream heat transfer coefficient.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In