0

Full Content is available to subscribers

Subscribe/Learn More  >

Novel 2D Transient Heat Conduction Calculation in a Cooled Rotor: Ventilation Preheating — Blowdown Flux

[+] Author Affiliations
J. P. Solano, G. Paniagua, A. de la Loma

von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium

Paper No. GT2008-51308, pp. 1105-1115; 11 pages
doi:10.1115/GT2008-51308
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

An alternative to classical data reduction techniques for thin film gauges in short duration facilities is presented. A finite element model of the two-dimensional unsteady heat conduction equation is solved in the cross-sectional area of a metallic airfoil bounded with a polyamide sheet, on which thermal sensors are deposited. As a result, the transient temperature field in the multilayered substrate and the experimental wall heat flux distribution are derived. The methodology allows for capuring all 2D heat conduction effects that are irremediably neglected with the 1D data reduction technique. The application of this technique in a compression tube facility allows an exact evaluation of the initial wall heat flux into cooled rotor blades. During the spinning up period, the rotor of this type of fully rotating transient facilities is spun up to nearly its nominal speed (from 0 RPM to 6200 RPM) resulting in preheating due to drag losses. The long duration of this experiment (∼450 s) and the magnitude of the wall temperature increase result in significant 2D conduction effects that are not accounted for using the 1D approach. In addition, short duration experiments confirm the existence of 2D effects at smaller time scales (∼0.5 s), as well as the influence of the initial non-uniform temperature distribution in the rotor blade. The resulting flux with such an initial condition appears to be the superposition of the wall heat flux at the end of the spinning up before the test and the flux due to the blow-down itself.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In