Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of a Conventional Thermal Analysis of a Turbine Cascade to a Full Conjugate Heat Transfer Computation

[+] Author Affiliations
Christoph Starke, Erik Janke

Rolls-Royce Deutschland Ltd. & Co. KG, Blankenfelde-Mahlow, Germany

Tomáš Hofer, Davide Lengani

Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium

Paper No. GT2008-51151, pp. 1013-1024; 12 pages
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME


Recent development in commercial CFD codes offers possibilities to include the solid body in order to perform conjugate heat transfer computations for complex geometries. The current paper aims to analyse the differences between a conjugate heat transfer computation and conventional uncoupled approaches where a heat transfer coefficient is first derived from a flow solution and then taken as boundary condition for a thermal conduction analysis of the solid part. Whereas the thermal analyses are done with a Rolls-Royce in-house finite element code, the CFD as well as the conjugate heat transfer computation are done using the new version 8 of the commercial code Fine Turbo from Numeca International. The analysed geometry is a turbine cascade that was tested by VKI in Brussels within the European FP6 project AITEB 2. First, the paper presents the aerodynamic results. The pure flow solutions are validated against pressure measurements of the cascade test. Then, the heat transfer from flow computations with wall temperature boundary conditions is compared to the measured heat transfer. Once validated, the heat transfer coefficients are used as boundary condition for three uncoupled thermal analyses of the blade to predict its surface temperatures in a steady state. The results are then compared to a conjugate heat transfer method. Therefore, a mesh of the solid blade was added to the validated flow computation. The paper will present and compare the results of conventional uncoupled thermal analyses with different strategies for the wall boundary condition to results of a conjugate heat transfer computation. As it turns out, the global results are similar but especially the over-tip region with its complex geometry and flow structure and where effective cooling is crucial shows remarkable differences because the conjugate heat transfer solution predicts lower blade tip temperatures. This will be explained by the missing coupling between the fluid and the solid domain.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In