0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of an Object-Oriented CFD Code to Heat Transfer Analysis

[+] Author Affiliations
Luca Mangani, A. Andreini

University of Florence, Firenze, Italy

Paper No. GT2008-51118, pp. 999-1011; 13 pages
doi:10.1115/GT2008-51118
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

This paper is aimed at showing the performances obtained with an open-source CFD code for heat transfer predictions after the addiction of specific modules. The development steps to make this code suitable for such simulations are described in order to point out its potentiality as a customizable CFD tool, appropriate for both academic and industrial research. The C++ library, named OpenFOAM, offers specific class and polyhedral finite volume operators thought for continuum mechanics simulations as well as built-in solvers and utilities. To make it robust, fast and reliable for RANS heat transfer predictions it was indeed necessary to implement additional submodules. The package coded by the authors within the OpenFOAM environment includes a suitable algorithm for compressible steady-state analysis. A SIMPLE like algorithm was specifically developed to extend the operability field to a wider range of Mach numbers. A set of Low-Reynolds eddy-viscosity turbulence models, chosen amongst the best performing in wall bounded flows, were developed. In addition an algebraic anisotropic correction, to increase jets lateral spreading, and an automatic wall treatment, to obtain mesh independence, were added. The results presented cover several types of flows amongst the most typical for turbomachinery and combustor gas turbine cooling devices. Impinging jets were investigated as well as film and effusion cooling flows, both in single and multi-hole configuration. Numerical predictions for wall effectiveness and wall heat transfer coefficient were tested against standard literature and in-house set-up experimental results. The numerical predictions obtained proves to be in-line with the equivalent models of commercial CFD packages obtaining a general good agreement with the experimental results. Moreover during the tests OpenFOAM code has shown a good accuracy and robustness, as well as an high flexibility in the implementation of user-defined submodules.

Copyright © 2008 by ASME
Topics: Heat transfer

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In