0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Test Rig for Film Cooling Experiments on Turbine Endwalls

[+] Author Affiliations
Martin Kunze, Stefan Preibisch, Konrad Vogeler

Technische Universität Dresden, Dresden, Germany

Kenneth Landis

Florida Turbine Technologies, Inc., Jupiter, FL

Andreas Heselhaus

Siemens AG Power Generation, Mülheim, Germany

Paper No. GT2008-51096, pp. 989-998; 10 pages
doi:10.1115/GT2008-51096
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

Endwall film cooling has been subject to many investigations over the past years. Since the coolant is injected into the wall boundary layer, it is primarily affected by the complex three-dimensional flow structure which is developed near the endwall inside turbine bladings. Little information can be found in the literature about how load variation affects endwall film cooling. As the secondary flow, driven by the circumferential and radial pressure gradient, is intensified with higher cascade load, strong interaction of the coolant injected in the near-wall cross flow is expected. Therefore, an airfoil cascade rig has been designed with an endwall cooling configuration containing multiple rows of expanded film holes. The film rows are combined to groups which can be supplied with different types of coolant gas through individual plenum cavities. Additionally, basic film cooling experiments have been conducted on a flat surface to validate the temperature measurement technique on results available in the literature. Film cooling injection is established through a row of 7 cylindrical holes inclined streamwise at 35° for a blowing rate ranging from 0.35 to 1.5. Experiments are conducted at constant main flow conditions at ReD = 4200 and at low turbulence level Tu = 1.5% with CO2 (DR = 1.37) and Air (DR = 0.9) used as coolant gas. Centerline effectiveness for selected blowing rates is compared to results available from previous literature.

Copyright © 2008 by ASME
Topics: Cooling , Turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In