0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Innovative Trailing Edge Cooling Configurations With Enlarged Pedestals and Square or Semicircular Ribs: Part II—Numerical Results

[+] Author Affiliations
Emiliano Di Carmine, Bruno Facchini, Luca Mangani

University of Florence, Firenze, Italy

Paper No. GT2008-51048, pp. 943-953; 11 pages
doi:10.1115/GT2008-51048
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

Trailing edge is a critical region for turbine airfoils since this part of the blade has to match aerodynamic, cooling and structural requirements at the same time. In fact aerodynamic losses are strictly related to trailing edge thickness which, on the contrary, tends to be increased to implement an internal cooling system, in order to face high thermal loads. At the moment the most employed devices consist of pin fins of various shapes, which contribute to both heat transfer enhancement and structural resistance improvement. Enlarged pedestals decrease pressure losses in comparison with multirow pin fins, even if the heat transfer increase is limited. This work deals with the investigation of the usage of enlarged pedestals, inserted in a wedge shaped duct, in conjunction with square or semicircular rib turbulators. The aim of the analysis is the evaluation of the convective Heat Transfer Coefficient (HTC) distribution over the endwall surface and the pressure drop of the converging duct. Numerical analysis used 3D RANS calculations. An in-house modified object-oriented CFD code and a commercial one were used. Several turbulence models and mesh types were tested. Numerical calculations were compared with experimental results obtained on the same geometries using a transient Thermochromic Liquid Crystals (TLC) based technique. Goals of this comparison are both the evaluation of the accuracy of CFD packages with standard two equation turbulence models in heat transfer problems with complex geometries and the analysis of flow details to complete and support experimental activity.

Copyright © 2008 by ASME
Topics: Cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In