0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Life Extension of Offshore Structures by Ultrasonic Peening

[+] Author Affiliations
Luis Lopez Martinez

LETS Global, Rotterdam, The Netherlands

Paper No. OMAE2011-49935, pp. 473-479; 7 pages
doi:10.1115/OMAE2011-49935
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Materials Technology; Jan Vugts Symposium on Design Methodology of Offshore Structures; Jo Pinkster Symposium on Second Order Wave Drift Forces on Floating Structures; Johan Wichers Symposium on Mooring of Floating Structures in Waves
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4435-9
  • Copyright © 2011 by ASME

abstract

The service life of offshore installations is limited by its structural integrity. Furthermore the structural integrity is mainly governed by the fatigue resistance of critical welded details. In a FPSO installation these details are among others pallet stools weld joints to deck structure and bulkheads/web frames weld connections to longitudinal in ballast tanks. ultrasonic peening can improve the fatigue resistance of welded joints. Fatigue test results shows an increase of four times for high stress ranges and up to ten times for high cycle fatigue. For specimens which have already consumed half of their fatigue life the treatment resets the clock to zero, as a minimum value. Consequently ultrasonic peening treatment was applied to several offshore installations on fatigue sensitive weld connections with the objective to extend the service life of the these. Finite Element Analysis carried out by classification societies for these offshore structures demonstrated critical fatigue lives for several weld connections. These weld connections were then treated by ultrasonic peening with the objective to extend their fatigue lives and by doing that reach the targeted service life for the installation. The successful application of the ultrasonic peening treatment was a pioneering work which involved several partners. A pilot project on a FPSO started in 2005 and the treated critical weld connections are still intact and show not sign of crack initiation despite the fact the calculations then showed shorter fatigue lives than the life span already consumed. As a result the same ultrasonic peening procedure has been proposed to be applied for other fatigue sensitive locations on the installation. Offshore installations around the world are reaching their original design life. Most of the operators chose to extend the service life of their assets rather than scrape them and build new. The reasons for that are: improved oil recovering techniques, time required to get a new build installation on site, environment concerns, wiser management of energy and resources among others. Therefore the Life Extension of Offshore Installations is a subject of current interest for the upstream industry.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In