0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on Advanced Internal Cooling Technologies for the Development of Next-Generation Small-Class Aircraft Engines

[+] Author Affiliations
Shu Fujimoto, Yoji Okita

IHI Corporation, Tokyo, Japan

Yoshitaka Fukuyama, Takashi Yamane, Fujio Mimura, Masahiro Matsushita

Japan Aerospace Exploration Agency, Tokyo, Japan

Toyoaki Yoshida

Tokyo University of Agriculture and Technology, Tokyo, Japan

Paper No. GT2008-50444, pp. 431-441; 11 pages
doi:10.1115/GT2008-50444
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

An innovative internal cooling structure named multi-slot cooling has been invented for high-pressure turbine (HPT) nozzles and blades. This cooling structure has been designed to be simple, inexpensive, and to exhibit good cooling performance. In order to confirm the cooling performance of this structure, test pieces of dummy turbine nozzles were manufactured. Three geometric parameters (width of slots, overall height of cooling channel, and height of jet impingement) are associated with these test pieces. The cooling performance tests were conducted by using these test pieces for several Reynolds numbers of the mainstream hot gas [2.2 × 105 – 3.4 × 105 ] and cooling airflow [3 × 103 – 1 × 104 ]. Infrared (IR) images of the heated surfaces of the test pieces were captured for every Reynolds number in the tests, and then the distributions of the cooling effectiveness were obtained. Simultaneously, the pressure losses were measured. This paper describes the hot gas flow tests performed to confirm the effects of the geometric parameters on the cooling performance and pressure loss, and to obtain data of Nusselt number and pressure loss coefficient for the design of turbine nozzles in the future by applying this new cooling structure to next-generation small-class aircraft engines. Additionally a preliminary analysis of airfoil cooling was performed to evaluate both cooling performance of conventional impingement cooling and multi-slot cooling in applying to a HPT nozzle, as a result it was found that the multi-slot cooling is well applicable to cooling of HPT airfoils.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In