Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation on Nonlinear Evolution of Rogue Waves on Currents Based on the NLS Equation

[+] Author Affiliations
Hanhong Hu, Ning Ma

Shanghai Jiao Tong University, Shanghai, China

Paper No. OMAE2011-50079, pp. 743-749; 7 pages
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4434-2
  • Copyright © 2011 by ASME


In this paper, nonlinear instability and evolution of deep-water rogue waves on following and opposing currents were described by numerical simulation for laboratory investigation. The generation of rogue waves in a numerical tank by means of wave focusing technique had been studied. Here a spatial domain model of current modified nonlinear Schrödinger (NLSC) equations in one horizontal dimension (1D) was established for describing the deep-water wave trains in a prescribed stationary current field. The transient water waves (TWW) was adopted as the initial condition of the NLSC equation. The steady current was added to see the effect of wave-current interaction on the energy concentration of gravity waves. The influence of current as well as other terms in the NLSC equations on wave height, inclination, particle velocity and acceleration are shown. Meanwhile, the focusing time/position of TWW influenced by the current field is investigated, which is of course a very important factor in experimental research when we generate rogue waves in the laboratory.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In