0

Full Content is available to subscribers

Subscribe/Learn More  >

Ultimate Capacity Behavior of Pitted Mild Steel Plates Under Biaxial Compression

[+] Author Affiliations
Xiaoli Jiang

Delft University of Technology, Delft, The Netherlands; Wuhan University of Technology, Wuhan, China

C. Guedes Soares

Technical University of Lisbon, Lisboa, Portugal

Paper No. OMAE2011-49980, pp. 721-728; 8 pages
doi:10.1115/OMAE2011-49980
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4434-2
  • Copyright © 2011 by ASME

abstract

The aim of the present paper is to investigate the effects of corrosion pits on the ultimate capacity of rectangular mild steel plates under biaxial compression. A series of non-linear FEM analysis on plates with partial depth pits are carried out, changing geometrical attributes of both pits and plates, i.e., the radius, depth, location and distribution of the pits and the slenderness of the plates. Possible interaction between transverse and longitudinal axial compression is studied applying different level of loading ratio and considering the effects of partial depth pitting corrosion. It is shown that biaxial loading ratio is a dominant factor affecting the behavior of pitted plates besides pits intensity and thickness loss at pits. When longitudinal compression is dominant load with loading ratio lower than 1, the interaction relationship curves for different DOP levels tend to be parallel with each other and the distance between every two parallel curves seems to be dependent mainly on the deviation of their DOP values and thickness loss at pits. Moreover, pits distribution along long and shirt edges could also affect the ultimate strength behavior of plates. The work done in the paper illustrates that the ultimate capacity of pitted plate could be derived from intact plate by introducing important influential parameters like DOP, thickness loss and possible pits distribution.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In