0

Full Content is available to subscribers

Subscribe/Learn More  >

Aero-Thermal Investigation of Tip Leakage Flow in a Film Cooled Industrial Turbine Rotor

[+] Author Affiliations
S. K. Krishnababu, H. P. Hodson, W. N. Dawes

University of Cambridge, UK

G. D. Booth

Siemens Industrial Turbomachinery Ltd., Lincoln, UK

G. D. Lock

University of Bath, Bath, UK

Paper No. GT2008-50222, pp. 177-186; 10 pages
doi:10.1115/GT2008-50222
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

A numerical investigation of the flow and heat transfer characteristics of tip leakage in a typical film cooled industrial gas turbine rotor is presented in this paper. The computations were performed on a rotating domain of a single blade with a clearance gap of 1.28% chord in an engine environment. This standard blade featured two coolant and two dust holes, in a cavity-type tip with a central rib. The computations were performed using CFX 5.6, which was validated for similar flow situations by Krishnababu et al., [18]. These predictions were further verified by comparing the flow and heat transfer characteristics computed in the absence of coolant ejection with computations previously performed in the company (SIEMENS) using standard in-house codes. Turbulence was modelled using the SST k-ω turbulence model. The comparison of calculations performed with and without coolant ejection has shown that the coolant flow partially blocks the tip gap, resulting in a reduction of the amount of mainstream leakage flow. The calculations identified that the main detrimental heat transfer issues were caused by impingement of the hot leakage flow onto the tip. Hence three different modifications (referred as Cases 1 to 3) were made to the standard blade tip in an attempt to reduce the tip gap exit mass flow and the associated impingement heat transfer. The improvements and limitations of the modified geometries, in terms of tip gap exit mass flow, total area of the tip affected by the hot flow and the total heat flux to the tip, are discussed. The main feature of the Case 1 geometry is the removal of the rib and this modification was found to effectively reduce both the total area affected by the hot leakage flow and total heat flux to the tip while maintaining the same leakage mass flow as the standard blade. Case 2 featured a rearrangement of the dust holes in the tip which, in terms of aero-thermal-dynamics, proved to be marginally inferior to Case 1. Case 3, which essentially created a suction-side squealer geometry, was found to be inferior even to the standard cavity tip blade. It was also found that the hot spots which occur in the leading edge region of the standard tip and all modifications contributed significantly to the area affected by the hot tip leakage flow and the total heat flux.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In