Full Content is available to subscribers

Subscribe/Learn More  >

Extensive Studies on Internal and External Heat Transfer Characteristics of Integrated Impingement Cooling Structures for HP Turbines

[+] Author Affiliations
Ken-Ichi Funazaki, Hamidon Bin Salleh

Iwate University, Morioka, Iwate, Japan

Paper No. GT2008-50202, pp. 167-176; 10 pages
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME


This paper deals with experimental and computational studies on internal and external heat transfer characteristics of advanced impingement cooling units combined with pin-fin cooling as well as film cooling, which is called integrated impingement cooling structure. This integrated cooling structure can be employed in the not too distant future as a simple model of quasi-transpiration cooling system for ultra high TIT (Turbine Inlet Temperature) aeroengines or gas turbines. The present study is motivated by the study of Nakamata et al. (2005) who carried out a series of studies on the integrated impingement cooling system. They found that several arrangements of impingement holes and film cooling holes mutually staggered with respect to pins yielded better cooling performance than other non-staggered configurations, although there was no evidence-based explanations shown in their study on the flow physics happening in the cooling models. Therefore, two large-scaled acrylic-resin test models with different arrangements of the impingement and film cooling holes around the pins are made in the present study, emulating the specimens used by Nakamata et al., to evaluate internal and external heat transfer coefficients as well as film effectiveness of the test models. This study accordingly aims at clarification of the reason for the clear distinction in cooling efficiency observed by Nakamata et al. between those two different cooling configurations. The measurement technique employed is a transient method using thermochromic liquid crystal to determine not only heat transfer coefficient but also film effectiveness at the same time. Steady RANS simulation is also executed using ANSYS CFX-10 to acquire detailed information on the flow behaviors and heat transfer characteristics inside and outside the cooling systems. The experimental data, along with the numerical information, reveal that the observed difference in cooling efficiency is can be explained mainly by the difference in internal heat transfer coefficient over the target plate, indicating that the pin arrangement around the impingement jet is an important factor in order to attain higher cooling performance of the proposed integrated impingement cooling system.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In