0

Full Content is available to subscribers

Subscribe/Learn More  >

Considerations of a Double-Wall Cooling Design to Reduce Sand Blockage

[+] Author Affiliations
Camron C. Land

Virginia Polytechnic Institute and State University, Blacksburg, VA

Karen A. Thole

Pennsylvania State University, University Park, PA

Chris Joe

Pratt & Whitney, East Hartford, CT

Paper No. GT2008-50160, pp. 145-154; 10 pages
doi:10.1115/GT2008-50160
From:
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME

abstract

Gas turbine engines use innovative cooling techniques to keep metal temperatures down while pushing the main gas temperature as high as possible. Cooling technologies such as film-cooling and impingement cooling are generally used to reduce metal temperatures of the various components in the combustor and turbine sections. As cooling passages become more complicated, ingested particles can block these passages and greatly reduce the life of hot section components. This study investigates a double-walled cooling geometry with impingement and film-cooling. A number of parameters were simulated to investigate the success of using impingement jets to reduce the size of particles in the cooling passages. Pressure ratios typically ranged between those used for combustor liner cooling and for blade outer air seal cooling whereby both these locations typically use double-walled liners. The results obtained in this study are applicable to more intricate geometries where the need to promote particle breakup exists. Results indicated that ingested sand had a large distribution of particle sizes where particles greater than 150 μm are primarily responsible for blocking the cooling passages. Results also showed that the blockage from these large particles was significantly influenced and can be significantly reduced by controlling the spacing between the film-cooling and impingement cooling plates.

Copyright © 2008 by ASME
Topics: Cooling , Sands , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In