Full Content is available to subscribers

Subscribe/Learn More  >

A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface

[+] Author Affiliations
Will F. Colban

Sandia National Laboratories, Livermore, CA

Karen A. Thole

Pennsylvania State University, University Park, PA

David Bogard

University of Texas - Austin, Austin, TX

Paper No. GT2008-50121, pp. 65-79; 15 pages
  • ASME Turbo Expo 2008: Power for Land, Sea, and Air
  • Volume 4: Heat Transfer, Parts A and B
  • Berlin, Germany, June 9–13, 2008
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4314-7 | eISBN: 0-7918-3824-2
  • Copyright © 2008 by ASME


A common method of optimizing coolant performance in gas turbine engines is through the use of shaped film-cooling holes. Despite widespread use of shaped holes, existing correlations for predicting performance are limited to narrow ranges of parameters. This study extends the prediction capability for shaped holes through the development of a physics-based empirical correlation for predicting laterally-averaged film-cooling effectiveness on a flat plate downstream of a row of shaped film-cooling holes. Existing data was used to determine the physical relationship between film-cooling effectiveness and several parameters, including; blowing ratio, hole coverage ratio, area ratio, and hole spacing. Those relationships were then incorporated into the skeleton form of an empirical correlation, using results from the literature to determine coefficients for the correlation. Predictions from the current correlation, as well as existing shaped hole correlations and a cylindrical hole correlation were compared to the existing experimental data. Results show that the current physics-based correlation yields a significant improvement in predictive capability, by expanding the valid parameter range and improving agreement with experimental data. Particularly significant is the inclusion of higher blowing ratio conditions (up to M = 2.5) into the current correlation, whereas the existing correlations worked adequately only at lower blowing ratios (M ≈ 0.5).

Copyright © 2008 by ASME
Topics: Cooling , Flat plates



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In