0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Reliability Assessment of Coupled Spar-Mooring System

[+] Author Affiliations
Mohammed Jameel

University of Malaya, Kuala Lumpur, Malaysia

Suhail Ahmad

Indian Institute of Technology Delhi, Delhi, India

Paper No. OMAE2011-49687, pp. 497-505; 9 pages
doi:10.1115/OMAE2011-49687
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Structures, Safety and Reliability
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4434-2
  • Copyright © 2011 by ASME

abstract

Spar platform is a compliant floating structure used for exploration of oil and gas from deep sea. To ensure safe operations, reliability against mooring line failure is a major concern in design. Furthermore, the mooring lines have high investment costs and are normally not accessible for in-service inspection. The common approach for solving the dynamics of Spar system is to employ a decoupled quasi-static approach which ignores the platform and mooring lines interaction. Coupled analysis, used presently, considers the mooring lines and platform in an integrated single model. Hence, it effectively captures the damping effect due to Spar and mooring lines coupling. Finite element code ABAQUS is used to obtain the response of Spar-mooring system under long crested random sea with current. Limit state function is derived based on failure due to fatigue for probabilistic reliability assessment. Random variables, participating actively in the limit state function are identified and statistically modeled. The most probable points or the design points are found to be an effective parameter for estimating partial factors of safety for load and resistance variables. First Order Reliability Method (FORM) is used to calculate probability of failure and reliability indices. The results are later checked against Monte carlo simulation. Reliabilities of segmental length of mooring and of full length are determined as they may significantly differ if the mooring properties change along the length. Reliability indices of annual and life time sea states are calculated.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In