0

Full Content is available to subscribers

Subscribe/Learn More  >

Detailed Analyses of the Tow Line Behaviour in Single, Double and Triple Towages in Case of Emergency Stop and Catenary

[+] Author Affiliations
A. J. Bos

Research, Development and Innovations at HMC, Almere, The Netherlands

R. Heemskerk

Product Development at HMC, Almere, The Netherlands

Paper No. OMAE2011-50327, pp. 841-848; 8 pages
doi:10.1115/OMAE2011-50327
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Polar and Arctic Sciences and Technology
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4433-5
  • Copyright © 2011 by ASME

abstract

Two phenomena have been studied in order to enhance the contingency plans and improve the safety of towages. 1. For multi tug towages it is important to prepare proper contingency plans for the case that a tug fails and overrun by the tow is a probability, especially the towages of FPSO’s and huge rigs performed by more tugs. A model has been developed to assess the time between the failure and the moment the tow will collide. After thorough research not the stopping distance proved important, but the time it takes for both objects to collide. In case the tug is allowed to be pulled towards the FPSO, the time from engine failure to collision is 380 [s] or 6 minutes 20 seconds. Both objects will collide with a speed difference of 2.28 [m/s]. In case the towline is cut, the time until collision is 1479 [s] , or 24 minutes and 40 seconds. In this case it is very important to cut the towline instantly after the engine failure. Otherwise the tug will gain a negative speed of 1 m/s within 2 minutes, and the distance between the FPSO and the tug will be reduced to 683 [m] already. 2. Grounding of tow lines must be avoided the standard of the catenary approach to assume a hyperbolic shape is investigated and a detailed finite element model approach shows that the standard assumptions are not accurate enough. A numerical approach has been used to calculate the effect of current and loss of tension in the wire. The influence of current along the towing-wire depends on the speed, diameter, length and the angle of the towing-wire in the water. The maximum depth increases when the speed increases or the tension in the wire decreases. In the example the depths are on the safe side for depths below 35[m], but above 35[m] the values are too optimistic when current is involved.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In