0

Full Content is available to subscribers

Subscribe/Learn More  >

Calculations on the Oil Film Between a Propeller Shaft and the Aft Sterntube Bearing

[+] Author Affiliations
R. Roemen

R&D Wärtsilä Netherlands, Drunen, The Netherlands

Paper No. OMAE2011-50301, pp. 815-821; 7 pages
doi:10.1115/OMAE2011-50301
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Polar and Arctic Sciences and Technology
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4433-5
  • Copyright © 2011 by ASME

abstract

The propulsion plant of a vessel generally consists of a propeller, a main engine and a shaft transferring the power. The shaft is supported by a set of bearings. One bearing in particular, the one directly forward of the propeller, is of special interest in this study. The correct functioning of this bearing is vital for the propulsion plant to remain operating. As a result of the different operating conditions of the propulsion plant particularly this bearing is subjected to varying loads. It also has to accommodate a certain slope mismatch with respect to the shaft. If a bearing functions correctly or not depends on the presence of an oil film between the bearing and the shaft. Also the thickness of the film and the generated pressures within it are deciding whether the loading is acceptable or not. As such a detailed analysis of the oil film between the shaft and the bearing presents a scientifically supported method to evaluate the acceptability of the loading of the bearing. Another advantage is that the method makes it possible to verify the correct functioning of the bearing in varying loads related to off design conditions. This study presents a general method to calculate the minimum oil thickness within a cylindrical bearing given such external parameters as load, slope mismatch, shaft speed and the oil viscosity. First a part of the bearing theory is presented as well as the relations governing the oil flow through the bearing. The method to solve the set of equations used is the finite difference method. Some adaptations of the formulae to enable the use of the method are presented. Also is explained what assumptions and boundary conditions are applied. In succession to the theoretical part the method is validated with a comparison to a set of experimental data. The practical significance of the use of the method is demonstrated by a practical case. Finally some conclusions are presented.

Copyright © 2011 by ASME
Topics: Bearings , Propellers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In