0

Full Content is available to subscribers

Subscribe/Learn More  >

A Methodology for Assessment of Internal Flow-Induced Vibration (FIV) in Subsea Piping Systems

[+] Author Affiliations
Yetzirah Urthaler, Michael Tognarelli

BP America Production Co., Houston, TX

Lyle E. Breaux

Stress Engineering Services, New Orleans, LA

Scot I. McNeill

Stress Engineering Services, Houston, TX

Eric M. Luther

Stress Engineering Services, Cincinnati, OH

Julian Austin

BP Exploration Operating Co., Sunbury, UK

Paper No. OMAE2011-49795, pp. 567-577; 11 pages
doi:10.1115/OMAE2011-49795
From:
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Polar and Arctic Sciences and Technology
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4433-5
  • Copyright © 2011 by ASME

abstract

A methodology is presented for assessing internal flow-induced vibrations (FIV) in subsea piping systems. Finite Element (FE) models are constructed for the subject piping systems, including insulation, internal hydrocarbon weight and added mass of the surrounding sea water. Operating vibration data are measured using ROV-deployable accelerometer loggers clamped directly to the piping systems. The measured data are processed, analyzed and used for two purposes: model verification and dynamic response correlation. Modal parameters are extracted from the measured data and compared to the modal parameters computed from the structural FE model. The model is refined until the frequencies and mode shape errors are within the desired tolerance. The measured data are then used to derive a representative forcing function for use with frequency-domain random response analysis. The forcing function is derived such that the properties of the predicted vibration spectrum match those of the measured vibration spectrum for all measurement locations. The method presented herein provides a novel semi-empirical technique for calibrating FE models to make fatigue life predictions for subsea piping systems using measured vibration data.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In