Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Free Vibration Characteristics and Mode Shapes of a Semi-Submersible Platform

[+] Author Affiliations
Jonas W. Ringsberg, Per Ernholm, Love Hogström

Chalmers University of Technology, Gothenburg, Sweden

Paper No. OMAE2011-49088, pp. 67-74; 8 pages
  • ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology; Polar and Arctic Sciences and Technology
  • Rotterdam, The Netherlands, June 19–24, 2011
  • ISBN: 978-0-7918-4433-5
  • Copyright © 2011 by ASME


The current investigation presents a global natural frequency and mode shape analysis of a semi-submersible platform. The purpose is to evaluate the separation in frequency between the semi-submersible’s global natural frequencies and the exciting wave spectrum. Two types of finite element models are compared: a beam element model and a shell element model. The main differences in the models are the level of resolution in details and model complexity. It is shown that both beam and shell element models can be used for the analysis. However, the beam element model is recommended for a first approximate assessment of the fundamental natural frequency and the interval/spectrum of global resonance frequencies compared to the wave spectrum. The shell element model is recommended when a more thorough analysis is required. In addition, the natural frequencies of the semi-submersible are calculated for free vibration in air. The fundamental frequency was 1.9 Hz for the beam element model and 1.5 Hz for the shell element model. When weights corresponding to a submerged structure in operation mode are considered, including the effects of added mass, the fundamental frequency for the first mode using the beam element model was decreased to 0.7 Hz, and to 0.6 Hz when using the shell element model. When compared to the DNV world wave spectrum’s highest frequency of 0.29 Hz it is concluded that the natural frequencies of the semi-submersible are at a sufficient distance from the exciting wave spectrum.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In