Full Content is available to subscribers

Subscribe/Learn More  >

Effect of the Molecular Weight and Density of Ambient Gas on Shock Wave in Laser-Assisted Nanostructuring

[+] Author Affiliations
Liying Guo, Xinwei Wang

Iowa State University, Ames, IA

Paper No. MicroNano2008-70178, pp. 641-665; 25 pages
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • Clear Water Bay, Kowloon, Hong Kong, June 3–5, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4294-0 | eISBN: 0-7918-3819-6
  • Copyright © 2008 by ASME


This paper presents the results from molecular dynamics simulations that are performed to explore the properties of the shock wave during laser-assisted near field surface nanostructuring. A quasi-three dimensional model is constructed to study systems consisting of over 2 million atoms. This work includes studies on the velocity as well as pressure evolution of shock wave front with respect to different solid/gas molecular mass ratios and different ambient gas densities. The limitation on shock wave formation under the same laser fluence is also investigated. The results show that lower ratio of the solid/gas molecular weight weakens the strength of the shock wave during the nanostructuring process. Additionally, the formation and attenuation of the shock wave under different ambient gas conditions is studied in substantial detail.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In