0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermally Actuated Droplet Motion on Chemically Homogeneous, Striated, and Defected Surfaces

[+] Author Affiliations
Jian-Zhang Chen

National Taiwan University, Taipei, Taiwan

Paper No. MicroNano2008-70096, pp. 495-496; 2 pages
doi:10.1115/MicroNano2008-70096
From:
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • Clear Water Bay, Kowloon, Hong Kong, June 3–5, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4294-0 | eISBN: 0-7918-3819-6
  • Copyright © 2008 by ASME

abstract

Experiments have demonstrated thermocapillary actuation on uniformly grafted partial-wettable surfaces. Droplet mobilization only occurs above a threshold thermal gradient or threshold droplet radius [1]. We characterized the motion instead in terms of a threshold depinning force, which successfully describes all the liquids tested. Above the depinning transition, the droplet speed, which is controlled by thermocapillary, capillary and viscous forces, increases monotonically with this reduced force parameterization. These results agree well to numerical predictions of a generalized Ford and Nadim model by using two fitting parameters, the slip coefficient and the magnitude of contact angle hysteresis [2–3]. In this follow-up study, we developed a doubly grafted surface, on which alkyltrichlorosilane coated stripes are surrounded by a more hydrophobic coating, perfluoroctyl-trichlorosilane. The quality of alkyltrichlorosilane coated stripes was still good for the thermocapillary droplet actuation, in which droplets were driven on the alkyltrichlorosilane surface and confined by the perfluoroctyl-trichlorosilane. The experimental results are also well described by a derived approximate three-dimensional model equation, which resembles the parameterization. The droplets are driven by thermocapillary force and retarded by contact angle hysteretic force, represented as contact angle hysteresis. This contact angle hysteresis is caused by chemical heterogeneity, surface roughness etc [4]. In the last part of this presentation, we will also present the thermocapillary droplet motion on a designed defected surface, which shows a tiny defect can severely hinge the droplet.

Copyright © 2008 by ASME
Topics: Motion

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In