0

Full Content is available to subscribers

Subscribe/Learn More  >

Capillary Flow in Microchannel With Pillars

[+] Author Affiliations
Auro Ashish Saha, Sushanta K. Mitra

Indian Institute of Technology - Bombay, Mumbai, Maharashtra, India

Mark Tweedie, Susanta Roy, Jim McLaughlin

University of Ulster, Jordanstown, Northern Ireland

Paper No. MicroNano2008-70043, pp. 473-480; 8 pages
doi:10.1115/MicroNano2008-70043
From:
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • Clear Water Bay, Kowloon, Hong Kong, June 3–5, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4294-0 | eISBN: 0-7918-3819-6
  • Copyright © 2008 by ASME

abstract

Numerical simulation and experimental results of free surface flow in microfluidic channel containing 10 × 15 array of 350 micron circular cross-section pillars is presented here. Passive capillary driven transport of de-ionized (DI) water and isopropyl alcohol is considered in the study. The channel is fabricated from glass microscope slides patterned with SU8 photoresist using an SF 100 maskless lithography system. Subsequently, microscope slide have been adhered with cyanoacrylate adhesive for sealing the device. The pillars are 120 micron deep, with adjacent pillars being separated by 300 micron. The three-dimensional free surface phenomena is simulated by volume of fluid (VOF) technique and microfluidic imaging is used to experimentally visualize the interface movement. This helps in understanding how free surface is modified by the presence of pillars for performing microfluidic analysis. The effectiveness of using pillars in the fluidic channel to enhance capillary flow and create a more uniform wavefront is demonstrated.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In