Full Content is available to subscribers

Subscribe/Learn More  >

A NEMD Study of the Thermal Conductivity and Surface Roughness of Silicon Thin Films

[+] Author Affiliations
Tai-Ming Chang, Chien-Chou Weng, Mei-Jiau Huang

National Taiwan University, Taipei, Taiwan

Paper No. MicroNano2008-70331, pp. 461-466; 6 pages
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • Clear Water Bay, Kowloon, Hong Kong, June 3–5, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4294-0 | eISBN: 0-7918-3819-6
  • Copyright © 2008 by ASME


The nonequilibrium molecular dynamics (NEMD) approach is adopted in this work to calculate the in-plane lattice thermal conductivity of Silicon thin films. In the simulation, the Stillinger-Weber (SW) potential is employed to capture both two-body and three-body interactions. The periodic boundary conditions are applied in the in-plane directions of a thin film. An additional surface potential is added to atoms that are near the surfaces. This surface potential imposes a force normal to the plane to prevent atoms from evaporation. A constant heat flux is generated by injecting energy into the system somewhere and withdrawing energy somewhere else via the velocity rescaling method. After a sufficiently long simulation time, the time-averaged temperature distribution is calculated and then the thermal conductivity can be obtained by the Fourier’s law. When the average temperature of the system is lower than the Debye temperature (θD = 645 K for Si), quantum corrections to both the MD temperature and the thermal conductivity are carried out. To speed up the computation, the present MD tool is parallelized based on a spatial decomposition technique. In this study, we attempt to investigate the relationship among the model parameters of the surface potential, the surface roughness, and the specular reflection fraction at the boundary that is often used in many theoretical studies.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In