0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Analysis of Offshore Platforms Subjected to Earthquake Loading Considering the Effects of Joint Flexibility

[+] Author Affiliations
S. Samadani, A. A. Aghakouchak, J. Mirzadeh Niasar

Tarbiat Modares University, Tehran, Iran

Paper No. OMAE2009-79851, pp. 747-756; 10 pages
doi:10.1115/OMAE2009-79851
From:
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4341-3 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME

abstract

In a conventional method of structural analysis, for modeling and analysis of jacket type offshore platforms, member connections are assumed to be rigid. In this method, members are rigidly connected which means there is no axial or rotational deformation at the end of brace member relative to chord axis. However in reality local deformations occur at chord surface due to applied loads from braces, which mean tubular joints are considerably flexible especially in non linear range of deformations. Therefore results of analysis based on rigid connections assumption differ from real behavior of the structure. Various research works have been carried out in the past on tubular joints and different methods have been presented in order to include the effect of joint flexibility in structural analysis. Most of these methods are just valid in elastic range but some non-linear methods have also been developed for simple tubular joints. In order to carry out a nonlinear analysis on a 3-D model of an offshore platform with multi-brace / multi-planar tubular joints, none of these simplified methods is applicable. In this case a complete model of tubular joints by non-linear shell elements is the most accurate one which is not only valid for non-linear analyses but also covers all type of tubular joints. In this paper two samples of offshore platforms are studied. These platforms are modeled using the following approaches: 1. No modeling of joints as structural elements (rigid connections). 2. Modeling of joint can with nonlinear shell elements (flexible connection). Different types of static non-linear analysis (Push over) are carried out and results are compared. In order to evaluate the results and compare this type of modeling with simplified methods included in professional software for the analysis of offshore structures, aforementioned platforms are also analyzed using the Fessler and MSL models to include effects of joint flexibility. The results of these types of modeling are also compared with the previous ones.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In