Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Studies on Semi-Active Vibration Control of Jacket Platforms With Magnetorheological Damper

[+] Author Affiliations
Chunyan Ji

Jiangsu University of Science and Technology, Zhenjiang, China

Paper No. OMAE2009-79847, pp. 739-745; 7 pages
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4341-3 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME


Jacket platforms are inevitably undergoing the environmental loads such as wind, waves, current, ice and earthquake etc., which will induce continuous vibration of the platforms. The vibration, on one hand, will cause fatigue damage, decreasing the platform’s reliability; on the other hand, the excessive vibration can’t satisfy the basic psychological requirements of the personnel. In order to reduce the excessive vibration of jacket platforms effectively, many control strategy and control equipments are proposed and studied. In the present study, a model experiment is designed to investigate the effectiveness of semi-active vibration control system with Magnetorheological (MR) Damper. A typical jacket offshore platform in Mexico Gulf is selected as experimental prototype. The model of the jacket platform is designed based on dynamical similarity criterion by the scale of 1:50. Furthermore, the optimal semi-active system of MR damper is designed by fuzzy control theory. In order to investigate the control effect of MR damper on the jacket platform under regular and random wave state, several model experiment load cases are performed. The experimental results show that the MR system designed by fuzzy theory can reduce the vibration of the platform effectively and in the same time the control effect is stable.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In