0

Full Content is available to subscribers

Subscribe/Learn More  >

A Proposal of Waste Heat Recovery System Through Methanol Steam Reforming Integrated With Absorption Heat Pump

[+] Author Affiliations
Shunsuke Kawasaki, Willy Yanto Wijaya, Hirotatsu Watanabe, Ken Okazaki

Tokyo Institute of Technology, Tokyo, Japan

Paper No. AJTEC2011-44253, pp. T20098-T20098-8; 8 pages
doi:10.1115/AJTEC2011-44253
From:
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • Honolulu, Hawaii, USA, March 13–17, 2011
  • ISBN: 978-0-7918-3892-1 | eISBN: 978-0-7918-3894-5
  • Copyright © 2011 by ASME

abstract

Through the methanol steam reforming (MSR), the energy of low temperature waste heat (100–150°C) can be recovered into that of hydrogen. However, actual MSR requires over 200°C to enable the high conversion of methanol into hydrogen. In this research, two types of combined absorption heat pump (AHP) and MSR systems were proposed: one-pass system and steam recycling system. The role of the AHP is to enhance the temperature level of the waste steam up to 230°C, which is used for the MSR. To evaluate the performances of these systems, “energy enhancement factor” was defined. As a result, the recovered energy of the waste heat was almost three times as much as the required work for the AHP when the reaction temperature and waste heat temperature and S/C ratio were 210°C and 150°C and 4.0, respectively. It was also indicated that the steam recycling was more effective at the higher reaction temperature and lower waste heat temperature and higher S/C ratio.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In