0

Full Content is available to subscribers

Subscribe/Learn More  >

Preparation and Characterization of Pt/WO3 Nano-Film and Its Hydrogen-Sensing Properties

[+] Author Affiliations
Changjun Hou, Jiale Dong, Yan Xu, Danqun Huo, Yike Tang, Jun Yang

Chongqing University, Chongqing, China

Paper No. MicroNano2008-70010, pp. 231-236; 6 pages
doi:10.1115/MicroNano2008-70010
From:
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • Clear Water Bay, Kowloon, Hong Kong, June 3–5, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4294-0 | eISBN: 0-7918-3819-6
  • Copyright © 2008 by ASME

abstract

Tungsten trioxide is an n-type semiconductor, which has been extensively used for the development of metal oxide semiconductor gas sensors. The hydrogen gas sensing performance of platinum (Pt) catalyst activated WO3 thin films were investigated here. All of the Pt/WO3 films membranes are sensitive to hydrogen gas and the sample by sol-gel and DC reactive magnetron sputtering methods. X-ray diffraction results indicate that the tungsten trioxide is cubic crystal, and the AFM analysis shows molecular structures of the samples are tetrahedron. It means the four consecutive quadrilateral forms we observed in the 9nmx9nm molecular structure are scattergram of tungsten-ions and oxide-ions on 106 sides in WO2.9 structure cell, and the lost one oxide-ion resulted in the transition of WO3 to WO2.9 . With anneal temperature rising, the membranous poriness decreasing. The higher crystal degree is, the lower gasochromic efficiency is. The change of combining environment and content of O−2 ions in colorized / decolorized state WOx films was observed in XPS analysis of Pt/WO3 film, the peak shape had changed greatly. As a result, the explanation to this phenomenon is available here according to XPS chemical shift of electric potential model theory.

Copyright © 2008 by ASME
Topics: Hydrogen

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In