Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Water, Temperature and Current Distributions in Anode of Polymer Electrolyte Fuel Cell During Low Humidity Operation

[+] Author Affiliations
Kosuke Nishida, Yoma Yokoi, Kazumasa Umeda

Kyoto Institute of Technology, Kyoto, Japan

Shohji Tsushima, Shuichiro Hirai

Tokyo Institute of Technology, Tokyo, Japan

Paper No. AJTEC2011-44549, pp. T20069-T20069-8; 8 pages
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • Honolulu, Hawaii, USA, March 13–17, 2011
  • ISBN: 978-0-7918-3892-1 | eISBN: 978-0-7918-3894-5
  • Copyright © 2011 by ASME


In order to prevent membrane dryout in polymer electrolyte fuel cells (PEFCs) during low humidity operation, it is essential to understand the fundamental phenomena of the water transport and reaction distribution at the anode side in an operating fuel cell. In this study, the water vapor distribution along the anode flow channel of a PEFC under low humidity conditions was quantitatively evaluated by using humidity test paper (HTP), and the effects of flow configuration and inlet humidification on the water distribution in the anode were investigated. HTP is a test paper for detecting water vapor of 20–90% RH, which is coated with a blue surface. This test paper was inserted between the anode electrode and separator in the transparent fuel cell, and the discoloration of HTP was directly visualized using a digital CCD camera. Furthermore, the temperature and current distributions in the anode electrode were measured using IR thermography and segmented cell structure concept. It was found that the water vapor concentration on the anode side increases immediately after the startup because of the back diffusion of the product water from the cathode to anode. In the case of the co-flow configuration with the dry anode and cathode inlets, the water vapor concentration increases monotonically along the anode flow channel. In addition, the anode water distribution affects the temperature and current distributions in the fuel cell largely. The local temperature and current density at the dry anode inlet are lower than those in the downstream region because of the membrane dehydration and low proton conductivity. On the other hand, in the case of the counter-flow pattern, the distributions of water concentration, temperature and current density have the maximum points in the midstream region. The counter-flow configuration is effective in improving the membrane hydration and alleviating the anode dryout.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In