Full Content is available to subscribers

Subscribe/Learn More  >

Riser Top Loads on Turret Moored FPSO

[+] Author Affiliations
Felipe de Araújo Castro

Petrobras, Rio de Janeiro, Brazil

Carlos Magluta, Gilberto Bruno Ellwanger

Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Paper No. OMAE2009-79683, pp. 649-659; 11 pages
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4341-3 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME


In the Campos Basin, offshore Brazil, catenary flexible risers are extensively used in marine production systems. One of the most important design phases of these systems is the riser extreme top load analysis, which provides results for riser and accessory designs as well as input for structural analysis of platform supports. In addition to the riser’s characteristics (weight, diameter, structural damping, axial and bending stiffness), riser top loads depend on several other factors, such as platform static and dynamic behavior, including the collective effect of lines (mooring lines and risers) drag and damping, platform motion, connection support position and environmental loading cases. This study is based on the results from a model test and numerical analysis of a typical turret moored FPSO system, with catenary risers and mooring lines. This test was programmed to evaluate the consequence of each of the above mentioned parameters on flexible riser top loads. Model tests were performed in the MARIM (Maritime research Institute Netherlands) wave tank to represent the offshore system in 850 meter water depth and included loading case tests combining wind, waves and current in different relative directions (collinear, crossed and transversal). The analysis of the model tests results indicated significant variations in the platform behavior, when the drag and damping generated by the risers and mooring lines were taken into account. Additional analyses were performed, based on numerical simulations of the top load variations (axial, shear tension and moment), induced by movement changes (added drag and damping caused by risers and mooring lines) and to evaluate the influence of vessel heading on top load results.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In