Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Non-Powered MEMS High G Shock Sensor

[+] Author Affiliations
Y. P. Wang, R. Q. Hsu

National Chiao Tung University, Hsinchu, Taiwan

C. W. Wu

National Taiwan Ocean University, Keelung, Taiwan

Paper No. MicroNano2008-70235, pp. 87-96; 10 pages
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • Clear Water Bay, Kowloon, Hong Kong, June 3–5, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4294-0 | eISBN: 0-7918-3819-6
  • Copyright © 2008 by ASME


Conventional shock sensors typically use mechanisms such as cantilever beams or axial springs as triggering devices. Reaction time for these conventional shock sensors are either far too slow or, in many cases, fail to function completely for high G (>300G) applications. In this study, a non-powered MEMS high G shock sensor with a measurement range of 3,000–21,000 G is presented. The triggering mechanism is a combination of cantilever and spring structure. The design of the mechanism underwent a series of analyses. Simulation and test results indicated that a MEMS high G shock sensor has a faster reaction time than conventional G shock sensors that use a cantilever beam or spring mechanism. Furthermore, the MEMS high G shock sensor is sufficiently robust to survive the impact encountered in high G application where most conventional G shock sensors fail.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In