0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Dry Gas Face Seals With Spiral Groove and Inner Annular Groove

[+] Author Affiliations
Xu-Dong Peng, Li-Li Tan, Ji-Yun Li, Song-En Sheng, Shao-Xian Bai

Zhejiang University of Technology, Hangzhou, Zhejiang, China

Paper No. MicroNano2008-70185, pp. 73-77; 5 pages
doi:10.1115/MicroNano2008-70185
From:
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • Clear Water Bay, Kowloon, Hong Kong, June 3–5, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4294-0 | eISBN: 0-7918-3819-6
  • Copyright © 2008 by ASME

abstract

A two-dimensional Reynolds equation was established for isothermal compressible gas between the two faces of a dry gas face seal with both spiral grooves and an inner annular groove onto the hard face. The opening force, the leakage rate, the axial film stiffness and the film stiffness to leakage ratio were calculated by finite element method. The comparisons with the sealing performances of a typical gas face seal only with spiral grooves onto its hard face were made. The effects of the face geometric parameters on the static behavior of such a seal were analyzed. The optimization principle for geometric parameters of a dry gas face seals with spiral grooves and an inner annular groove was presented. The recommended geometric parameters of spiral grooves and circular groove presented by optimization can ensure larger axial stiffness while lower leakage rates.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In