0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Effects on Nano-Energy Absorption Systems (Nano-EAS)

[+] Author Affiliations
Claudiu Valentin Suciu

Fukuoka Institute of Technology, Fukuoka, Japan

Paper No. MicroNano2008-70039, pp. 23-32; 10 pages
doi:10.1115/MicroNano2008-70039
From:
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
  • Clear Water Bay, Kowloon, Hong Kong, June 3–5, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4294-0 | eISBN: 0-7918-3819-6
  • Copyright © 2008 by ASME

abstract

Development of intelligent and ecological energy absorption systems (EAS) is important to various fields such as automotive (vehicle suspensions, bumpers, engine mounts), construction (protections against seismic and wind-induced vibrations), and defense (parachuted objects, armors). Usual EAS use composites, shape-memory alloys and foams. Recently, liquid adsorption/desorption in/from nanoporous solids was employed to develop high-performance nano-EAS. Energy loss is based on the well-known capillary phenomenon: external work must be done to spread a non-wetting liquid on a solid surface. Nano-EAS provide considerably higher dissipated energies, about 1–10J/g at deformability of 30–70%, compared with the energy absorption of Ti-Ni alloys, about 0.01–0.05J/g at deformability of 5–8%. For water against hydrophobic nanoporous silica gel (artificial sand), the nano-EAS become ecological; they can be also made intelligent by thermo-electrical control. Relative to thermal effects, Qiao et al. have investigated, for nanoporous silica gel with insufficient coverage of the alkyl-based hydrophobic coating, the problem of hysteresis recovery by increasing the temperature in the range 20∼80°C. Energy loss capacity reduced severely after the first loading-unloading cycle, so, the hysteresis was found as irreversible. Shape of the first hysteresis, the accessible specific pore volume and the desorption pressure were almost unaffected by the temperature change. At temperature augmentation the second hysteresis was partially recovered and when the temperature exceeded 50°C the system became almost fully reusable. Water inflow was found as governed by Laplace-Washburn equation but the outflow process was perceived as thermally aided. On the other hand, Eroshenko et al. have contradictorily obtained for nanoporous silica gel with full coverage of the alkyl-based hydrophobic coating, a stable hysteresis at repeated working cycles. Adsorption pressure decreased and desorption pressure increased at temperature augmentation, this producing a reduction of the hysteresis area and damping. However, the accessible specific pore volume was found as thermally unaffected. Oppositely, both the in- and out-flows were found as governed by Laplace-Washburn equation. In this work, for nanoporous silica gels with partial and full coverage of the alkyl and fluorocarbon based hydrophobic coatings, the thermal effects on the hysteresis and damping performances are studied. Test rig used is a compression-decompression chamber introduced inside of an incubator that allows temperature adjustment in the range of −10∼50°C. Results reveal that, depending on the hydrophobic coating coverage, findings reported by Qiao et al. and Eroshenko et al. are in fact not contradictory but complementary. However, as expected, the accessible specific pore volume was found to decrease at temperature reduction. In order to explain all these apparently opposite experimental findings, a model based on the water cluster size distribution versus temperature, the pore size distribution of silica gel and the ability of water molecules to form hydrogen bonds with the uncovered hydroxyl groups on the solid surface is proposed.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In