Full Content is available to subscribers

Subscribe/Learn More  >

Development and Experimental Validation of a Micro/Nano Thermal Ground Plane

[+] Author Affiliations
H. Peter J. de Bock, Shakti Chauhan, Pramod Chamarthy, Chris Eastman, Stanton Weaver, Bryan P. Whalen, Tao Deng, Boris Russ

GE Global Research, Niskayuna, NY

Frank M. Gerner

University of Cincinnati, Cincinnati, OH

Douglas Johnson, David Courson, Quinn Leland, Kirk Yerkes

Air Force Research Laboratory, Dayton, OH

Paper No. AJTEC2011-44646, pp. T10249-T10249-7; 7 pages
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • Honolulu, Hawaii, USA, March 13–17, 2011
  • ISBN: 978-0-7918-3892-1 | eISBN: 978-0-7918-3894-5
  • Copyright © 2011 by ASME


Heat pipes are commonly used in electronics cooling applications to spread heat from a concentrated heat source to a larger heat sink. Heat pipes work on the principles of two-phase heat transfer by evaporation and condensation of a working fluid. The amount of heat that can be transported is limited by the capillary and hydrostatic forces in the wicking structure of the device. Thermal ground planes are two-dimensional high conductivity heat pipes that can serve as thermal ground to which heat can be rejected by a multitude of heat sources. As hydrostatic forces are dependent on gravity, it is commonly known that heat pipe and thermal ground plane performance is orientation dependent. The effect of variation of gravity force on performance is discussed and the development of a miniaturized thermal ground plane for high g operation is described. In addition, experimental results are presented from zero to −10g acceleration. The study shows and discusses that minimal orientation or g-force dependence can be achieved if pore dimensions in the wicking structure can be designed at micro/nano-scale dimensions.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In