0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Study on Large Truncation of Deepwater Mooring Line

[+] Author Affiliations
Yihua Su, Jianmin Yang, Longfei Xiao, Gang Chen

Shanghai Jiao Tong University, Shanghai, China

Paper No. OMAE2009-79218, pp. 201-212; 12 pages
doi:10.1115/OMAE2009-79218
From:
  • ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Honolulu, Hawaii, USA, May 31–June 5, 2009
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4341-3 | eISBN: 978-0-7918-3844-0
  • Copyright © 2009 by ASME

abstract

Modeling the deepwater mooring system in present available basin using standard Froude scaling at an acceptable scale presents new challenges. A prospective method is to truncate the full-depth mooring lines and find an equivalent truncated mooring system that can reproduce both static and dynamic response of the full-depth mooring system, but large truncation arise if the water depth where the deepwater platform located is very deep or the available water depth of the basin is shallow. A Cell-Truss Spar operated in 1500m water depth is calibrated in a wave basin with 4m water depth. Large truncation arises even though a small model scale 1:100 is chosen. A series of truncated mooring lines are designed and investigated through numerical simulations, single line model tests and coupled wave basin model tests. It is found that dynamic response of the truncated mooring line can be enlarged by using larger diameter and mass per unit length in air. Although the truncated mooring line with clump presents a “taut” shape, its dynamic characteristics is dominated by the geometry stiffness and it underestimates dynamic response of the full-depth mooring line, even induces high-frequency dynamic response. There are still two obstacles in realizing dynamic similarity for the largely truncated mooring system: lower mean value of the top tension of upstream mooring lines, and smaller low-frequency mooring-induced damping.

Copyright © 2009 by ASME
Topics: Mooring

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In