0

Full Content is available to subscribers

Subscribe/Learn More  >

Capturing Nongradient Transport in Nonequilibrium Gas Flow

[+] Author Affiliations
X. J. Gu, D. R. Emerson

STFC Daresbury Laboratory, Warrington, UK

Paper No. MNHT2008-52028, pp. 1265-1273; 9 pages
doi:10.1115/MNHT2008-52028
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

A higher order moment method is employed to construct the transport model for nonequilibrium gas flow in microscale geometries. The one dimensional planar Couette flow was chosen to demonstrate the significance of capturing the nongradient transport phenomena in the prediction of velocity and temperature fields. For planar Couette flow in the transition regime, the velocity profile is nonlinear and the induced temperature field is no longer parabolic. These features are attributed to the nongradient transport mechanism in a nonequilibrium gas. Furthermore, it is revealed that, for a given temperature field, the gradient transport model overestimates the heat transfer significantly. This, again, can be compensated by the nongradient transport mechanism.

Copyright © 2008 by ASME
Topics: Gas flow

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In