0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Two-Phase Flow in a Multi-Branch Reduced T-Junction With Co-Current Stratified Gas-Liquid Flow

[+] Author Affiliations
Robert Bowden, Ibrahim Hassan

Concordia University, Montreal, QC, Canada

Paper No. AJTEC2011-44606, pp. T10199-T10199-7; 7 pages
doi:10.1115/AJTEC2011-44606
From:
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • Honolulu, Hawaii, USA, March 13–17, 2011
  • ISBN: 978-0-7918-3892-1 | eISBN: 978-0-7918-3894-5
  • Copyright © 2011 by ASME

abstract

Experiments were performed in a horizontal reduced T-junction using a branch diameter of 6.35 mm and an inlet pipe diameter of 50.8 mm. The inlet length was 1.8 m, and three branch orientations were tested at 0, 45, and 90 degrees from horizontal. Air and water, operating at 206 kPa, were used to provide a two-phase environment. Both fluids flowed co-currently within the inlet towards the branch in the smooth-stratified regime. Flow visualization was used to identify the onset of gas entrainment. The critical height at the onset of gas entrainment was quantified as a function of the single phase liquid branch Froude number for the 45, and 90 degree branches, respectively.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In