0

Full Content is available to subscribers

Subscribe/Learn More  >

Direct Numerical Simulation of the Interaction of an Ultra Short-Pulsed Intense Laser With a H2+ Molecule

[+] Author Affiliations
Y.-M. Lee, J.-S. Wu, T.-F. Jiang

National Chiao Tung University, Hsinchu, Taiwan

Y.-S. Chen

National Applied Research Laboratories, Hsinchu, Taiwan

Paper No. MNHT2008-52350, pp. 1171-1177; 7 pages
doi:10.1115/MNHT2008-52350
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

In this paper, interactions of a linearly polarized ultra short-pulsed intense laser with a single H2 + molecule at various angles of incidence are studied by directly solving the time-dependent three-dimensional Schrodinger equation (TDSE), assuming Born-Oppenheimer approximation. An explicit stagger-time algorithm is employed for time integration of the TDSE, in which the real and imaginary parts of the wave function are defined at alternative times, while a cell-centered finite-volume method is utilized for spatial discretization of the TDSE on Cartesian grids. The TDSE solver is then parallelized using domain decomposition method on distributed memory machines by applying a multi-level graph-partitioning technique. The solver is applied to simulate laser-molecular interaction with test conditions including: laser intensity of 0.5*1014 W/cm2 , wavelength of 800 nm, three pulses in time, angle of incidence of 0–90° and inter-nuclear distance of 2 a.u.. Simulation conditions include 4 million hexahedral cells, 90 a.u. long in z direction, and time-step size of 0.005 a.u.. Ionization rates, harmonic spectra and instantaneous distribution of electron densities are then obtained from the solution of the TDSE. Future possible extension of the present method is also outlined at the end of this paper.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In