Full Content is available to subscribers

Subscribe/Learn More  >

Dynamical Behavior of Water Inside a Capped Single-Walled Carbon Nanotube

[+] Author Affiliations
Jian-Ming Lu

National Applied Research Laboratories; National Cheng Kung University, Tainan, Taiwan

Chun-Yi Wu, Wang-Long Li, Chi-Chuan Hwang, Yun-Che Wang

National Cheng Kung University, Tainan, Taiwan

Cheng-Shiu Hung, Wen-Tung Chien

National Pingtung University of Science and Technology, Pingtung, Taiwan

Paper No. MNHT2008-52227, pp. 1129-1133; 5 pages
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME


Dynamical behavior of water confined inside a capped single-walled carbon nanotube (SWCNT) is investigated at different temperatures via the Molecular Dynamics (MD) Simulation method. Water in a SWCNT behaves in the fashion of random walk and increases amplitudes with temperature. Moreover, the SWCNT’s tip vibrates more significantly as temperature increases. The water molecules embedded nanotubes exhibit less thermal noise amplitude, indicating increases in effective stiffness in the water-nanotube composite. Further, the vibrational amplitude of a water-embedded SWCNT’s tip is more noticeable during the initial transient state at the beginning of our MD simulations, and gradually decays, and reaches a steady state, as MD simulation time increases. The variation of vibrating amplitude of the SWCNT’s tip increases linearly as temperature increases when no water is present inside. The tip vibration exhibits the largest amplitude when temperature is at the boiling point of water. Moreover, the tip vibration increases monotonically as temperature increases, providing information to estimate the effective Young’s modulus of the water-nanotube composite. The diffusion pathways of water inside a SWCNT are also studied in terms of temperature changes.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In